Nonlinear dispersive regularization of inviscid gas dynamics
نویسندگان
چکیده
منابع مشابه
the study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
Nonlinear identification of aircraft gas-turbine dynamics
Identi cation results for the shaft-speed dynamics of an aircraft gas turbine, under normal operation, are presented. As it has been found that the dynamics vary with the operating point, nonlinear models are employed. Two di7erent approaches are considered: NARX models, and neural network models, namely multilayer perceptrons, radial basis function networks and B-spline networks. A special att...
متن کاملDispersive regularizations and numerical discretizations for the inviscid Burgers equation
We study centred second-order in time and space discretizations of the inviscid Burgers equation. Although this equation in its continuum formulation supports non-smooth shock wave solutions, the discrete equation generically supports smooth solitary wave solutions. Using backward error analysis we derive the modified equation associated with the numerical scheme. We identify three different eq...
متن کاملAn Inviscid Regularization of the One-Dimensional Euler equations
This paper examines an averaging technique in which the nonlinear flux term is expanded and the convective velocities are passed through a low-pass filter. It is the intent that this modification to the nonlinear flux terms will result in an inviscid regularization of the homentropic Euler equations and Euler equations. The physical motivation for this technique is presented and a general metho...
متن کاملDispersive nonlinear geometric optics
We construct infinitely accurate approximate solutions to systems of hyperbolic partial differential equations which model short wavelength dispersive nonlinear phenomena. The principal themes are the following. ~1! The natural framework for the study of dispersion is wavelength e solutions of systems of partial differential operators in e]. The natural e-characteristic equation and e-eikonal e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2020
ISSN: 2158-3226
DOI: 10.1063/1.5133720